If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3t^2=974
We move all terms to the left:
3t^2-(974)=0
a = 3; b = 0; c = -974;
Δ = b2-4ac
Δ = 02-4·3·(-974)
Δ = 11688
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{11688}=\sqrt{4*2922}=\sqrt{4}*\sqrt{2922}=2\sqrt{2922}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{2922}}{2*3}=\frac{0-2\sqrt{2922}}{6} =-\frac{2\sqrt{2922}}{6} =-\frac{\sqrt{2922}}{3} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{2922}}{2*3}=\frac{0+2\sqrt{2922}}{6} =\frac{2\sqrt{2922}}{6} =\frac{\sqrt{2922}}{3} $
| 4-2(-5x+2)=40+5x | | 3x=6/x-1 | | 1-3r=4(r-1) | | 33=2x-3 | | 14-4z=10 | | 2z+11=-3 | | 8(x-3)=6x-3(x+1) | | 7-3h=-5 | | 5+10m=1/2(8+20) | | 10k-48=4(-2+3k)+8k | | 1/8=r+2/3 | | 4(9k-5.5)-2k=22.5 | | -23+p=9(8p+5)+3 | | 5(x-8)-1(x+6)=18 | | 11+3(r-7)=16-(r+2) | | 3/2x+4x=415 | | 12=-5x+17 | | 10(10n+2)=20+4n | | Y=½x | | 10(11)-6=9y-5 | | 3/2b+4b=415 | | 2x2–4x=x2+96 | | 4-8(b+3)=7+b | | -1/2(5x-8)-1=7 | | 10x-6=7x+27 | | 3(2h-3)=2h+9 | | 3.5x=32 | | 4-2(k+7)=-28+k | | 5(n-5)=2n+8 | | 3d—7=19 | | 6=2r+4 | | 4n+8(3n+2)=128 |